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ABSTRACT 

Finite simple groups G with a cyclic maximal 2-Sylow intersection V are 
classified under the assumption that [G: N6(F)] is odd. 

1. Introduction 

This paper is a step toward classification of simple groups with a cyclic maximal 

2-Sylow intersection. We prove the following: 

THEOREM. Let G be a nonabelian finite simple group. Suppose that V is a 

maximal 2-Sylow intersection of G satisfying the following conditions: 

i) V is cyclic, and 

ii) ]G :Na(V) I is odd. 

Then G is isomorphic to one of the following groups: 

A) PSL(2, q), q # 2 n _ _ _ l f o r s o m e n > 2 a n d q # 3 .  

B) PSL(3, q), q = - 1 mod4), but q ~ 2" - l forsome n > 2. 

C) PSU(3, q), q = 0 or l(mod4), but q ~ 2" + l for some n >= 2. 

D) Sz(q). 

E) J l l .  
Conversly, all groups mentioned satisfy the assumptions of the theorem. 

In Section 2, groups satisfying the conditions of the Theorem will be classified 

under the assumption that No(V) is solvable. The nonsolvable case will be dealt 

with in Section 3. 

Our notation is standard. If H is a group, K c H means that K is a proper 
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subgroup of  H and O(H) denotes the maximal normal sugbroup of  H of  odd order. 

We will say that H is a TI-group if the intersection of  two distinct S2-subgroups 

of  H is always 1. The groups PSL(2,2"), n > 2, PSU(3,2"), n >_ 2 and Sz(2"), 

n >_ 3 will be called Bender simple groups. The simple group of  Janko of  order 

175,560 will be denoted by J l l .  Finally, if H is a group of  permutations on a set 

f~ and A is a subset of  f2, the subgroup of  H fixing the elements of  A will be 

denoted by HA. 

2. Solvable N~(V) 

We will prove the following: 

PROPOSITION I. Under the assumptions of the Theorem, suppose that Na(V ) 

is solvable. Then G is isomorphic to one of the following groups: 

I) PSL(3,q), q -  - 1  (rood4), but q r 2 " - 2 - 1 f o r  some n > 4. 

II) PSU(3, q), q -- 1 (rood4), but q ~ 2 "-2 + [ for some n >= 4. 

IIl) PSL(2, q), q odd, but q v ~ 2" +_ 1 for some n > 2 and q ~ 3. Conversely, all 

groups mentioned satisfy the assumptions of the proposition. 

PROOF. Let H -  Na(V); since H is solvable, V #  1. The maximality of  V 

forces H/V to be a solvable non-2-closed TI-group. Thus, by [8], an S2-subgrou p 

of H]V is of  2-rank l, hence in view of assumptions (i)-(ii), 2-rank G = 2. It 

follows then by [2] that an S2-subgrou p R of H (hence of  G) is of  one of  the fol- 

lowing types: (a) dihedral, (b) quasi-dihedral, (c) wreathed, or (d) isomorphic to 

S2-subgrou p of  PSU(3, 4). Moreover, it follows by [3] that if R [V is cyclic, then 

} R : V I = 2 .  

Cases (d) and (c) are impossible, since then R does not possess a normal cyclic 

subgroup V such that R/V  is cyclic of  order 2 or generalized quaternion. 

Suppose now that R is quasi-dihedral of order 2" (Case b). Then R/V is cyclic of  

order 2 and by I l l ,  one of  the following holds: (i) G -~ Mal, (ii) G ~_ PSL(3,q), 

q - 1 (mod 4), (iii) G ~_ PSU(3,q), q ---- I (rood4). Clearly V is a 2-Sylow inter- 

section if and only if H is not 2-closed. In case (i), C~(V) = V hence H is a 2- 

group, contrary to our assumptions. In case (ii), let z be the involution of  V. 

Then by [1], C6(z)~-GL(2,q)/D, where D is a central subgroup of GL(2,q) of 

odd order. Let K = GL(2, q) and let V~ be a subgroup of  K such that V _  

VID/D and VI ~ D  = 1. As H ~ C~(z) and D is central, H ~-NK(Vx)/D and H 

is 2-closed iff N --- NK(V~) is 2-closed. Now it follows from [7, Chapter II, Satz 

7.3.a] that N = RIL, where R~ is an S2-subgroup of  K of order 2" and L is a cyclic 
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normal subgroup of  N of order (q2 _ 1 ) / 2 " - 1 .  Since V1 char RI, then Nx(R~) ~ N 

and N is 2-closed i f fN=NK(R1).  However, by [4, Th. 4], NK(RI) ~ R1 x L 1, where 

L I is a cyclic group of order ( q -  1)/2. Hence, N is 2-closed if and only if  

(q2 _ 1)/2,-1 = (q _ 1)/2 or q = 2 "-2 - 1, and we get Case (I) of  Proposition 1. 

Possibility (iii) of Case (b) must be dealt with. By [7, Chapter II, Satz 10.12], 

G is a doubly transitive group of  permutations of order (q3 + 1)q3(q2 _ 1)/d, 

where d = (3, q + 1), and of  degree q3 + 1. The subgroup T of G fixing one letter 

is of  the type T = QK, where Q is a normal subgroup of  T of order q3, which 

is regular on the remaining q3 letters, and K is a cyclic group of  order (q2 _ 1)/d 

Since q - 1 (mod4), we may assume that V _~ K. Let C - C~(V) = V x D; then 

as I H/CI  = 2, H = RD and H is 2-closed iff D c C~(t), where t is an involution 

such that R = (V, t). It follows by [11, Th. 9.4] that H acts doubly transitively 

on A, the set of  letters fixed by V. Thus H,  is a maximal subgroup of  H and since 

V is an S2-subgroup of both C and C,, CH, c H  and consequently CH, = H,. 

As [H : C] = 2, C = H,  and I A] = 2. Hence [H :HA] = 2 and C = HA ---q T - Q. 

Thus (IDI, I Q [ ) = I  and since K__.C, K =  H c ~ T .  However V,D c H ~ T  

c RD, hence K = V • D. Thus H is 2-closed iff D c Cg(t) --- W, hence iff 

K =  VW. As be [9, Lemma 6] I W] = (q + 1)/d, it follows that R is 2-closed 

iff (q2 _ 1)/d = 2"-1(q + l)/2d. Thus PSU(3,q),  q = 1 (mod4) satisfies the 

assumptions of  Propositions 1 iff q # 1 + 2 "-2 for some n > 4, as stated in (II). 

We must deal with Case (a), namely with groups having a dihedral Sz-subgroup. 

By [6], either (i) G "~ .47 or (ii) G ~- PSL(2, q), q > 3 odd. Also, in the dihedral 

case, I R/VI = 2. i f  G -  .47, then C ~ ( V ) =  V and H is a 2-group, contrary to 

our assumptions. I f  G is of  type (ii), then H is a dihedral group of  order q + e, 

where ~ = 4- 1. Thus H is 2-closed i f fH is a 2-group, hence i f fq=2"  4- 1. We get 

(III), thus concluding the proof of  Proposition 1. 

3. Nonsolvable NG(V) 

We will prove the following: 

PROPOSITION 2. Under the assumptions of the Theorem, suppose that NG(V) 

is nonsolvable. Then either IV I = 1 and G is isomorphic to a simple Bender 

group or [ V I = 2 and G ~_ J l l .  Conversely, all groups mentioned satisfy the 

assumptions of the proposition. 

PROOF. Suppose that IV] = 1. Then, by the maximality of  V, G is a simple 
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TI-group and by [-8, Th. 1], G is isomorphic to a simple Bender group. From now 

on we will assume that l V [ >= 2 and we will prove that G _~ J12. 
Let R be an S2-subgrou p of  Na(V) -- H (hence of G), and let S bethe maximal 

solvable normal subgroup of H. We will proceed in a series of steps. 

1) V is a normal S2-subgroup of S and S = V x O(S). 

PROOF. Let V 1 be an S2-subgrou p of S. Then V c_ V 1 and H=SNa(VI) .  Since 

H is nonsolvable, NH(V~)is not 2-closed. The maximality of V forces V 1 = V. 

Since V is cyclic, S = V x O(S). 

2) H/S is a TI-group. 

PROOF. It follows from (1) and the maximality of V. 

3) H = C~(V). 

PROOF. H/C~(V)  is an abelian 2-group. Thus C~(V)/S is a normal subgroup of  

H / S  of index a power of  2. By [8, Ths. 2 and 3], CG(V)/S = H/S .  

4) I f  R 1 is an S2-subgrou p of G containing V, then V ~_ Z(RI).  

PROOF. In view of  (3), is suffices to prove that R1 -~ H. Let R2 = R 1 c~ H and 

let R a be an S2-subgroup of Hcontaining R2. Since RI =V,  also R2 ~ V. But 

then the maximality of V forces R3 = R~, as required. 

5) There exists a normal subgroup L of H containing S, such that IH :L[ 

is odd and L / S  is isomorphic to a simple Bender group. 

PROOF. It follows from (2) and [8, Th. 2]. 

6) Z(R) ~_ n~(R). 

PROOF. Since Z(R)S/S<1 NL/s(RS/S), it follows by (5) and the structure of 

simple Bender groups that either Z(R)S /S  = 1 or Z(R)S /S  = t)~(RS/S). Thus, 

either Z(R) = V or ~l(R) _~ Z(R). 

Suppose that Z(R) = V = (v) ;  then by [5,Corollary 1], the simplicity of  G 

forces the existence of g e G such that v g e CR(v), v g ~ v. However, then V g c R 

and by (4), V g ~_ Z(R), which implies that V g = V. Thus g e NG(V) = C~(V) and 

v ~ = v, a contradiction. 

7) V = ( z ) ,  z an involution. 

PROOF. Let z be the involution in V. By [5,Corollary 1], there exists in R an 

involution y = z g r  z. As by (6) y e Z(R), we may choose g e N~(R). But then 

Vg< R and V t7 V g = 1. Consequently, V ~'~ V~S/S < R S / S  and since V g is 

cyclic, it follows by (5) and the structure of simple Bender groups that 1 Vq[ = 2. 
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8) G has at most two conjugate classes of involutions. 

PROOE. Since H / V  is a non-2-closed Tl-group,  it follows by I-8, Lemma 6-1 

that H / V  has a single conjugacy class of  involutions. Let y be a fixed involution 

in R - V (2-rank G > 2) and let u be an arbitrary involution in R - V. Then 

there exists t e l l  = C~(z) such that uV = yW.  Hence either u = yt or u = y t z  

= (yz) t. Since by [5-1 z is not isolated, it follows that also z is conjugate in G to 

either yt or (yz) t. 

9) Either G ~_ J l t  or G has two conjugate classes of involutions. 

PROOF. Suppose that R is abelian. Since CG(z) is nonsolvable, it follows by 

1-10] that G ~_ J l t  and this group indeed satisfies the assumptions of  Proposition 2. 

Now suppose that R is not abelian. There exists an element co of  R of order 4. 

By (6), 092 is a central involution of  R. Sulzpose that o92 is conjugate to z in R; 

then there exists t ~ N~(R) such that z = (o92), = (o9t)2 and ogtV is an involution 

in H / V .  Let y be an involution in R -  V; then by 1-8, Lemma 6], there exists 

k e H = Ca(z) such that ykV = og'V, which is impossible, since ykV contains no 

elements of  order 4. 

10) G does not have two conjugate classes of involutions. 

PROOF. Suppose that G is a counter-example and let I ta,(R)l = q. Then by 

(6), R contains q - 1 central involutions distributed between two conjugate classes 

of  involutions of  G, say K 1 and K2. We may assume without loss of  generality 

that l R n K t ] = 2k, k is a positiv, integer. Consequently [K 1 ] = [ G:  Na(R)[2k/r 

where r is the number of  S2-subgroups of  G containing a fixed element x of  K~. 

In view of (6), I is odd, hence r is even. However, again by (6), r is the number 

of  S2~subgrouFs of C~(x), which is odd by the Sylow theorem. This contradic- 

tion proves (I0). 

Proposition 2 follows from the opening remarks, (9), and (10). 

The Theorem follows from Propositions 1 and 2. 

REFERENCES 

I. J. L. Alperin, R. Brauer and D. Gorenstein, Finite gro'aps with quasi-di:ledral and 
wreathed Sylow 2-subgro:rps, Trans. Amer. Math. Soc. 151 (1970), 1-261. 

2. J. L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, to appear. 
3. A. R. Camina and T. M. Gagen, Gro:lps with metasyclic Sylow 2.suSgro,aps, Canad. J. 

Math. 21 (1959), 1235-1237. 
4. R. Carter and P. Fong, The Sylo',v 2-suSgroups of the fi~ite classical groups, J. Algebra 

1 (196-~), 139-151. 



Vol. 15, I973 A CYCLIC MAXIMAL 2-SY-LOW INTERSECTION 355 

5. G. Glauberman, Centralelements o f  core-free groups, J. Algebra 4 (1966), 403--420. 
6. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 

2-subgroups, L 11, II1, J. Algebra 2 (1965), 85-151,218-270, 354-393. 
7. B. Hulalaert, Evdliche Gruppen, 1, Springer-Verlag, New-York, 1957. 
8. M. Suzuki, Finite groups of  e:'en order in which Slyow 2-groups are independent, Ann. 

of Math. 80(I96r 58-77. 
9. M. Suzuki, A characterization of the 3-dimensional projective unitary group over a finite 

field of  odd characteristic, J. Algebra 2 (I 965), I -  14. 
10. J. H. Walter, The characterization o f  finite groups with abelian Sylow 2-subgroups, Ann. 

of Math. 89 (1969), 405-514. 
11. H. Wielandt, Fi.~itePermutation Groups, Academic Press, New York, 1964. 

DEPARTMENT OF MATHEMATICAL SCIENCES 
TEL Avw UNIVERSITY 

TEL AVlV, ISRAEL 


