ON SIMPLE GROUPS WITH A CYCLIC MAXIMAL 2-SYLOW INTERSECTION

BY

MARCEL HERZOG

ABSTRACT

Finite simple groups G with a cyclic maximal 2-Sylow intersection V are classified under the assumption that $[G: N_G(V)]$ is odd.

1. Introduction

This paper is a step toward classification of simple groups with a cyclic maximal 2-Sylow intersection. We prove the following:

THEOREM. *Let G be a nonabelian finite simple group. Suppose that V is a maximal 2-Sylow intersection of G satisfying the following conditions:*

- i) V *is cyclic, and*
- ii) $|G:N_G(V)|$ is odd.

Then G is isomorphic to one of the following groups:

- A) *PSL(2, q),* $q \neq 2^n \pm 1$ *for some n* > 2 and $q \neq 3$.
- B) *PSL(3, q), q* = -1 mod 4)*, but q* \neq *2ⁿ 1 for some n* \geq 2*.*
- C) *PSU*(3, *q*), $q \equiv 0$ or 1(mod 4), *but* $q \neq 2^n + 1$ *for some* $n \ge 2$.
- D) $S₂(q)$.
- E) J_{11} .

Conversly, all groups mentioned satisfy the assumptions of the theorem.

In Section 2, groups satisfying the conditions of the Theorem will be classified under the assumption that $N_G(V)$ is solvable. The nonsolvable case will be dealt with in Section 3.

Our notation is standard. If H is a group, $K \subset H$ means that K is a proper

Received August 18, 1972

subgroup of H and $O(H)$ denotes the maximal normal sugbroup of H of odd order. We will say that H is a TI-group if the intersection of two distinct S_2 -subgroups of *H* is always 1. The groups $PSL(2,2^n)$, $n \ge 2$, $PSU(3,2^n)$, $n \ge 2$ and $S_z(2^n)$, $n \geq 3$ will be called *Bender simple groups*. The simple group of Janko of order 175,560 will be denoted by J_{11} . Finally, if H is a group of permutations on a set Ω and Δ is a subset of Ω , the subgroup of H fixing the elements of Δ will be denoted by H_{Λ} .

2. Solvable $N_G(V)$

We will prove the following:

PROPOSITION 1. *Under the assumptions of the Theorem, suppose that* $N_c(V)$ *is solvable. Then G is isomorphic to one of the following groups:*

- I) *PSL(3, q),* $q \equiv -1 \pmod{4}$ *, but* $q \neq 2^{n-2} 1$ *for some n* ≥ 4 .
- II) *PSU*(3, *q*), $q \equiv 1 \pmod{4}$, *but* $q \neq 2^{n-2} + 1$ *for some* $n \ge 4$.

III) PSL(2, q), q odd, but $q \neq 2ⁿ \pm 1$ for some $n > 2$ and $q \neq 3$. Conversely, all *groups mentioned satisfy the assumptions of the proposition.*

PROOF. Let $H \equiv N_G(V)$; since H is solvable, $V \neq 1$. The maximality of V forces H/V to be a solvable non-2-closed TI-group. Thus, by [8], an S_2 -subgroup of H/V is of 2-rank 1, hence in view of assumptions (i)-(ii), 2-rank $G = 2$. It follows then by [2] that an S_2 -subgroup R of H (hence of G) is of one of the following types: (a) dihedral, (b) quasi-dihedral, (c) wreathed, or (d) isomorphic to S₂-subgroup of *PSU*(3,4). Moreover, it follows by [3] that if R/V is cyclic, then $|R:V|=2.$

Cases (d) and (c) are impossible, since then R does not possess a normal cyclic subgroup V such that R/V is cyclic of order 2 or generalized quaternion.

Suppose now that R is quasi-dihedral of order $2ⁿ$ (Case b). Then R/V is cyclic of order 2 and by [1], one of the following holds: (i) $G \simeq M_{11}$, (ii) $G \simeq PSL(3,q)$, $q \equiv 1 \pmod{4}$, (iii) $G \simeq PSU(3, q)$, $q \equiv 1 \pmod{4}$. Clearly V is a 2-Sylow intersection if and only if H is not 2-closed. In case (i), $C_G(V) = V$ hence H is a 2group, contrary to our assumptions. In case (ii), let z be the involution of V . Then by [1], $C_G(z) \simeq GL(2,q)/D$, where D is a central subgroup of $GL(2,q)$ of odd order. Let $K = GL(2, q)$ and let V_1 be a subgroup of K such that $V \simeq$ V_1D/D and $V_1 \cap D = 1$. As $H \subseteq C_G(z)$ and D is central, $H \simeq N_K(V_1)/D$ and H is 2-closed iff $N \equiv N_K(V_1)$ is 2-closed. Now it follows from [7, Chapter II, Satz 7.3.a] that $N = R_1L$, where R_1 is an S_2 -subgroup of K of order 2ⁿ and L is a cyclic

normal subgroup of N of order $(q^2 - 1)/2^{n-1}$. Since V_1 char R_1 , then $N_K(R_1) \subseteq N$ and N is 2-closed *iff* $N = N_K(R_1)$. However, by [4, Th. 4], $N_K(R_1) \simeq R_1 \times L_1$, where L_1 is a cyclic group of order $(q - 1)/2$. Hence, N is 2-closed if and only if $(q^2 - 1)/2^{n-1} = (q - 1)/2$ or $q = 2^{n-2} - 1$, and we get Case (I) of Proposition 1.

Possibility (iii) of Case (b) must be dealt with. By [7, Chapter II, Satz 10.12], G is a doubly transitive group of permutations of order $(q^3 + 1)q^3(q^2 - 1)/d$, where $d = (3, q + 1)$, and of degree $q³ + 1$. The subgroup T of G fixing one letter α is of the type $T = QK$, where Q is a normal subgroup of T of order q^3 , which is regular on the remaining q^3 letters, and K is a cyclic group of order $(q^2 - 1)/d$ Since $q \equiv 1 \pmod{4}$, we may assume that $V \subseteq K$. Let $C \equiv C_G(V) = V \times D$; then as $|H/C| = 2$, $H = RD$ and *H* is 2-closed iff $D \subset C_c(t)$, where *t* is an involution such that $R = \langle V, t \rangle$. It follows by [11, Th. 9.4] that H acts doubly transitively on Δ , the set of letters fixed by V. Thus H_a is a maximal subgroup of H and since V is an S₂-subgroup of both C and C_{α} , $CH_{\alpha} \subset H$ and consequently $CH_{\alpha} = H_{\alpha}$. As $[H:C] = 2$, $C = H_a$ and $|\Delta| = 2$. Hence $[H:H_{\Delta}] = 2$ and $C = H_a \subseteq T - Q$. Thus $(|D|, |Q|)=1$ and since $K \subseteq C$, $K = H \cap T$. However V, $D \subseteq H \cap T$ \subset *RD,* hence $K = V \times D$. Thus *H* is 2-closed iff $D \subset C_K(t) \equiv W$, hence iff $K=VW$. As be [9, Lemma 6] $|W| = (q+1)/d$, it follows that R is 2-closed iff $(q^2 - 1)/d = 2^{n-1}(q + 1)/2d$. Thus *PSU(3, q), q* = 1 (mod 4) satisfies the assumptions of Propositions 1 iff $q \neq 1 + 2^{n-2}$ for some $n \geq 4$, as stated in (II).

We must deal with Case (a), namely with groups having a dihedral S_2 -subgroup. By [6], either (i) $G \simeq A_7$ or (ii) $G \simeq PSL(2, q)$, $q > 3$ odd. Also, in the dihedral case, $|R/V| = 2$. If $G \simeq A_7$, then $C_G(V) = V$ and H is a 2-group, contrary to our assumptions. If G is of type (ii), then H is a dihedral group of order $q + \varepsilon$, where $\varepsilon = \pm 1$. Thus H is 2-closed iff H is a 2-group, hence iff $q = 2^n \pm 1$. We get (III), thus concluding the proof of Proposition 1.

3. Nonsolvable $N_G(V)$

We will prove the following:

PROPOSITION 2. *Under the assumptions of the Theorem, suppose that* $N_G(V)$ *is nonsolvable. Then either* $|V| = 1$ *and G is isomorphic to a simple Bender group or* $|V| = 2$ and $G \simeq J_{11}$. Conversely, all groups mentioned satisfy the *assumptions of the proposition.*

PROOF. Suppose that $|V| = 1$. Then, by the maximality of V, G is a simple

TI-group and by [8, Th. 1], G is isomorphic to a simple Bender group. From now on we will assume that $|V| \ge 2$ and we will prove that $G \simeq J_{11}$.

Let *R* be an S_2 -subgroup of $N_G(V) \equiv H$ (hence of *G*), and let *S* be the maximal solvable normal subgroup of H . We will proceed in a series of steps.

1) *V* is a normal S_2 -subgroup of S and $S = V \times O(S)$.

PROOF. Let V_1 be an S_2 -subgroup of S. Then $V \subseteq V_1$ and $H = SN_B(V_1)$. Since H is nonsolvable, $N_H(V_1)$ is not 2-closed. The maximality of V forces $V_1 = V$. Since V is cyclic, $S = V \times O(S)$.

2) *H/S is a TI-group.*

PROOF. It follows from (1) and the maximality of V .

$$
3) \quad H = C_G(V).
$$

PROOF. *H/C_G(V)* is an abelian 2-group. Thus $C_G(V)/S$ is a normal subgroup of *H/S* of index a power of 2. By [8, Ths. 2 and 3], $C_G(V)/S = H/S$.

4) *If* R_1 *is an* S_2 -subgroup of G containing V, then $V \subseteq Z(R_1)$.

PROOF. In view of (3), is suffices to prove that $R_1 \subseteq H$. Let $R_2 = R_1 \cap H$ and let R_3 be an S₂-subgroup of H containing R_2 . Since $R_1 \supset V$, also $R_2 \supset V$. But then the maximality of V forces $R_3 = R_1$, as required.

5) *There exists a normal subgroup L of H containing S, such that* $|H:L|$ *is odd and L/S is isomorphic to a simple Bender group.*

PROOF. It follows from (2) and $\lceil 8, \text{Th. 2} \rceil$.

6) $Z(R) \supseteq \Omega_1(R)$.

PROOF. Since $Z(R)S/S \triangleleft N_{L/S}(RS/S)$, it follows by (5) and the structure of simple Bender groups that either $Z(R)S/S = 1$ or $Z(R)S/S = \Omega_1(RS/S)$. Thus, either $Z(R) = V$ or $\Omega_1(R) \subseteq Z(R)$.

Suppose that $Z(R) = V = \langle v \rangle$; then by [5, Corollary 1], the simplicity of G forces the existence of $g \in G$ such that $v^g \in C_R(v)$, $v^g \neq v$. However, then $V^g \subset R$ and by (4), $V^g \subseteq Z(R)$, which implies that $V^g = V$. Thus $g \in N_G(V) = C_G(V)$ and $v^g = v$, a contradiction.

7) $V = \langle z \rangle$, *z* an involution.

PROOF. Let z be the involution in V. By [5, Corollary 1], there exists in R an involution $y = z^g \neq z$. As by (6) $y \in Z(R)$, we may choose $g \in N_G(R)$. But then $V^g \lhd R$ and $V \cap V^g = 1$. Consequently, $V^g \simeq V^g S/S \lhd RS/S$ and since V^g is cyclic, it follows by (5) and the structure of simple Bender groups that $|V^q| = 2$.

354 MARCEL HERZOG Israel J. Math.,

8) *G has at most two conjugate classes of involutions.*

PROOF. Since H/V is a non-2-closed TI-group, it follows by [8, Lemma 6] that H/V has a single conjugacy class of involutions. Let y be a fixed involution in $R - V$ (2-rank $G \ge 2$) and let u be an arbitrary involution in $R - V$. Then there exists $t \in H = C_G(z)$ such that $uV = y^tV$. Hence either $u = y^t$ or $u = y^tz$ $=(yz)^t$. Since by [5] z is not isolated, it follows that also z is conjugate in G to either y^t or $(yz)^t$.

9) *Either G* \simeq J_{11} *or G has two conjugate classes of involutions.*

PROOF. Suppose that R is abelian. Since $C_G(z)$ is nonsolvable, it follows by [10] that $G \simeq J_{11}$ and this group indeed satisfies the assumptions of Proposition 2.

Now suppose that R is not abelian. There exists an element ω of R of order 4. By (6), ω^2 is a central involution of R. Suppose that ω^2 is conjugate to z in R; then there exists $t \in N_G(R)$ such that $z = (\omega^2)^t = (\omega^1)^2$ and $\omega^t V$ is an involution in H/V . Let y be an involution in $R - V$; then by [8, Lemma 6], there exists $k \in H = C_G(z)$ such that $y^kV = \omega^tV$, which is impossible, since y^kV contains no elements of order 4.

10) *G does not have two conjugate classes of involutions.*

PROOF. Suppose that G is a counter-example and let $|\Omega_1(R)| = q$. Then by (6), R contains $q - 1$ central involutions distributed between two conjugate classes of involutions of G, say K_1 and K_2 . We may assume without loss of generality that $|R \cap K_1| = 2k$, k is a positive integer. Consequently $|K_1| = |G:N_G(R)|2k/r$ where r is the number of S_2 -subgroups of G containing a fixed element x of K_1 . In view of (6), $|K_1|$ is odd, hence r is even. However, again by (6), r is the number of S₂-subgroups of $C_G(x)$, which is odd by the Sylow theorem. This contradiction proves (I0).

Proposition 2 follows from the opening remarks, (9), and (10).

The Theorem follows from Propositions 1 and 2.

REFERENCES

I. J. L. Alperin, R. Brauer and D. Gorenstein, *Finite gro'aps with quasi-di:ledral and wreathed Sylow 2-subgro:rps,* Trans. Amer. Math. Soc. 151 (1970), 1-261.

2. J. L. Alperin, R. Brauer and D. Gorenstein, *Finite simple groups of 2-rank two,* to appear.

3. A. R. Camina and T. M. Gagen, *Gro:nps with metacyclic Sylow 2-subgroups*, Canad. J. Math. 21 (1969), 1234-1237.

4. R. Carter and P. Fong, *The Sylo:v* 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139-151.

5. G. Glauberman, *Centralelements of core-free groups,* J. Algebra 4 (1966), 403--420.

6. D. Gorenstein and J. Walter, *The characterization of finite groups with dihedral Sylow 2-subgroups, L 11, II1,* J. Algebra 2 (1965), 85-151,218-270, 354-393.

7. B. Huppert, *Endliche Gruppen, I*, Springer-Verlag, New-York, 1957.

8. M. Suzuki, *Finite groups of even order in which Slyow* 2-groups are independent, Ann. of Math. 80 (1964), 58-77.

9. M. Suzuki, *A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic, J. Algebra 2 (1965), 1-14.*

10. J. H. Walter, *The characterization of finite groups with abelian Sylow 2-subgroups,* Ann. of Math. 89 (1969), 405-514.

11. H. Wielandt, *Finite Permutation Groups*, Academic Press, New York, 1964.

DEPARTMENT OF MATHEMATICAL SCIENCES

TEL AVIV UNIVERSITY

TEL AVIV, ISRAEL